delay-line detector

see also:

DLD

The position-readout of MCPs via a delay-line detector (DLD) is today’s best choice in the case of single-particle detection. Delay line detectors have excellent signal-to-noise properties, depict superior imaging dynamics, and, in addition, have a high time resolution. Modern delay-line detectors are furthermore multiple-hit-capable. Our TDCs are perfect companions for the readout of these detectors.

A delay-line position readout is used to measure the position of impact of a particle on a (typically larger area) microchannel plate detector with a resolution of approx. 100µm. The electron cloud, which is emitted at the location of the particle impact on the detector on the back of an MCP-stack induces a signal in a wire. The signal travels along the wire towards the wire’s two ends. By measuring the arrival time difference of the induced signal at each end of the wire, the position of impact on the wire can be deduced. In order to cover a larger area, the detection wire (i.e. the delay-line) is wound around a detector body. 2D-position of impact information can be obtained by employing a set of two orthogonal windings.